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Abstract

Upwind scheme has been justified to be an accurate and stable numerical method to solve the hyperbolic system of

equations. However, extension of an upwind scheme to solve a non-hyperbolic system may encounter the complex

eigensystem in the coefficient matrix. It is difficult to determine the characteristic quantities by the complex eigenvectors

and the upwind sense by the complex eigenvalues. Therefore, a suitable transformation is developed in the present work

to derive a canonical form for the non-hyperbolic system in the real space. This canonical form will be identical with the

characteristic equation if the system becomes hyperbolic. Based on this canonical equation, an upwind scheme can be

constructed. This scheme is also extended to include the degenerate system and system with additional inter-drag and

diffusion terms. Numerical treatment to avoid the impractically refined time step for a stable computation with a strong

inter-drag term is also introduced. Normal-mode analyses are performed to indicate the stability of the proposed

scheme and the associated time step constraint for a stable computation. Several representative model equations are

solved and the calculated results show that the proposed scheme may be a useful tool to simulate both the hyperbolic

and non-hyperbolic system of equations.
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1. Introduction

Upwind scheme has been well established and justified to be an accurate and stable numerical method to

solve hyperbolic system of equations. It has been successfully applied to simulate many complicated

physical phenomena [1]. To apply the upwind schemes, the equation system is cast into its characteristic

form and the upwind sense for the numerical treatment is determined by the eigenvalues arising from the

coefficient matrix. Therefore, the applications of a conventional upwind scheme are confined in the hy-

perbolic equation system. Recently, efforts have been invested by researchers to simulate two-phase flow
problems with the upwind schemes [2–4]. However, in some circumstances, the governing two-phase

equation system may become non-hyperbolic and the upwind solution procedure will fail due to the
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complex eigensystem inherent in coefficient matrix. It is impossible to find a real characteristic quantity

propagating in the space–time domain and the upwind sense required for the numerical scheme cannot be

determined by a complex eigenvalue. To surmount this difficulty and fulfill the numerical requirement for
upwind schemes, some additional modifications on the virtual mass and interfacial pressure terms in the

two-phase model equation are introduced to render the equation system hyperbolic [5,6]. From physical

point of view, such a treatment is not necessary for a stable computation. A non-hyperbolic system of two-

phase flow problem may also be stabilized with appropriate inter-drag and viscous terms [7]. Therefore, a

reasonable solution procedure should be performed directly on the non-hyperbolic system and not on the

hypothetically hyperbolic system. Consequently, the prevalent method to solve two-phase model equations

is to decouple the system equations into many single equations and solve these equations sequentially [8,9].

Strictly speaking, however, such a segregated treatment for a coupled equation system will not result in a
true upwind scheme since the upwind sense should be characterized by the eigenvalues rather than the

elements in the coefficient matrix. With a simple numerical analysis, it can be easily shown that this se-

quential treatment may not guarantee to provide a stable solution even for a linear hyperbolic system.

Meanwhile, stable solutions obtained with the sequential methodology may be incurred by excessive nu-

merical diffusion, which will inevitably deteriorate the solution accuracy [10]. This dilemma stimulates the

present study to develop a stable and accurate upwind scheme suitable for both the hyperbolic and non-

hyperbolic system of equations.

Although the present study is motivated by the unsteady non-hyperbolic two-phase flow problem, it
is obvious that methodology proposed in this paper can be employed to solve any type of equation

system. For example, one can solve the two-dimensional Laplace equation by rearranging the original

equation

o/
ox2

þ o/
oy2

¼ 0 as
oU

ox
þ A

oU

oy
¼ 0

with

U ¼ o/
ox

;
o/
oy

� �T

and A ¼ 0 1

�1 0

� �
;

and by marching the numerical solution in the x-direction. Similar treatment can be found in the error

vector propagation (EVP) method proposed by Roache [11] to solve a single elliptic equation. The present

method, nevertheless, can solve a single equation as well as the coupled system equations.
Therefore, the main objective of present study is to provide a feasible numerical scheme to solve general

hyperbolic or non-hyperbolic systems. Following the same line of reason for the conventional upwind

scheme in solving hyperbolic systems, we will derive an associated canonical form for a non-hyperbolic

system on which the numerical scheme can be constructed. Besides this section, content of the present paper

is organized as follows. Section 2 details the mathematical formulation for the canonical form of a non-

degenerate system of equations. Based on this canonical form, the corresponding upwind scheme is derived

in Section 3. Numerical analyses are performed to indicate the deficiency of the sequential treatment and

show the stability of the proposed scheme. In Section 4, the resulting scheme is extended to include the
degenerate equation systems, where the corresponding canonical form is derived with the Jordan decom-

position of a coefficient matrix. Effects of inter-drag and viscous terms on the stability of a non-hyperbolic

equation system are analyzed in Section 5. A numerical treatment is also introduced to avoid the im-

practically refined time step for a stable computation with a strong inter-drag term. In Section 6, numerical

experiments on solving several representative problems of linear non-degenerate, linear degenerate, non-

linear non-degenerate and non-linear degenerate equation systems with the present scheme are performed.

Finally, Section 7 is devoted to the conclusions of this study.
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2. Canonical form of non-hyperbolic system of equations

For convenience, we first demonstrate the canonical form of a non-degenerate system of equations on

which the difference scheme should be constructed. Cases of degenerate systems will be considered in a later

section. Therefore, consider the general non-degenerate system of equations

oU

ot
þ A

oU

ox
¼ 0; ð1Þ

where U is the solution vector in real space, U 2 RN�1, and A is a non-defective real coefficient matrix,

A 2 RN�N, which can then be diagonalized by a non-singular matrix, L [12],

LAL�1 ¼ K ¼ diagðk1; . . . ; kN Þ: ð2aÞ

The ith row in L;LðiÞ is regarded as the ith left eigenvector of A with respective to the eigenvalue ki,

LðiÞA ¼ kiL
ðiÞ: ð2bÞ

It should be noted that the eigenvalues and eigenvectors of A may be complex, ki 2 C and LðiÞ 2 C1�N.

Therefore, the eigensystem can then be designated with its real and imaginary parts:

K ¼ KR þ jKI; L ¼ LR þ jLI; ð2cÞ

where subscripts R and I, respectively, denote the real and imaginary parts of a complex quantity and j is

the unit imaginary number, j2 ¼ �1. Since the coefficient matrix, A, is a real matrix, its eigenvalues and

associated eigenvectors can be constructed to satisfy the following properties:

(i) If ki is real (ki;I ¼ 0), then its associated eigenvector is also real (L
ðiÞ
I ¼ 0).

(ii) If ki is complex (ki;I 6¼ 0), then its complex conjugate kj is also an eigenvalue of A. In addition, if their

associated eigenvectors are also complex conjugate

kj;R ¼ ki;R; kj;I ¼ �ki;I;
L
ðiÞ
R ¼ L

ðjÞ
R ; L

ðiÞ
I ¼ �L

ðjÞ
I ;

then these two complex conjugate, ki and kj, can then be designated as a conjugate eigenvalue pair for

the real matrix, A.

With the conjugate eigenvalue pair, we can further define a row/column transform matrix, T,

(i) If ki is real, T
ðiÞ ¼ IðiÞ.

(ii) If ki is complex and kj is its conjugate eigenvalue, TðiÞ ¼ IðjÞ.

In the above relations, I is the identity matrix and superscript (i) denotes the ith row of a matrix. Therefore,
TM performs a row exchange operation on matrix M,

ðTMÞðiÞ ¼ MðiÞ, if ki is a real eigenvalue;

ðTMÞðiÞ ¼ MðjÞ and ðTMÞðjÞ ¼ MðiÞ, if ki and kj are the conjugate eigenvalues.

and MT performs a column exchange operation on matrix M,

ðMTÞðiÞ ¼ MðiÞ, if ki is a real eigenvalue;

ðMTÞðiÞ ¼ MðjÞ and ðMTÞðjÞ ¼ MðiÞ, if ki and kj are the conjugate eigenvalues.

Subscript (i) denotes the ith column of a matrix.

Based on these properties, we can easily derive the following relations for the eigensystem of matrix, A,
by straightforward algebraic manipulations:
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ðiÞ TT ¼ I or T�1 ¼ T; ð3aÞ
ðiiÞ TLR ¼ LR; ð3bÞ
ðiiiÞ TLI ¼ �LI; ð3cÞ
ðivÞ TKRT ¼ KR; ð3dÞ
ðvÞ TKIT ¼ �KI; ð3eÞ
ðviÞ Iþ jT

1þ j

� �
I� jT

1� j

� �
¼ I; ð3fÞ
ðviiÞ Iþ jT

1þ j

� �
KRð þ jKIÞ ¼ KRð þ KITÞ

Iþ jT

1þ j

� �
; ð3gÞ
ðviiiÞ ðLR þ LIÞ ¼
Iþ jT

1þ j

� �
ðLR þ jLIÞ: ð3hÞ

Relations (vi) and (viii) also imply that ððIþ jTÞ=ð1þ jÞÞ and ðLR þ LIÞ are non-singular matrixes.
Therefore, substitution of these relations into the original coefficient matrix will lead to the following de-

composition:

A ¼ Ar þ Ai ð4aÞ
with

Ar ¼ ðLR þ LIÞ�1KRðLR þ LIÞ ¼ L�1KRL; ð4bÞ

Ai ¼ ðLR þ LIÞ�1KITðLR þ LIÞ ¼ L�1KITL ¼ jL�1KIL: ð4cÞ
It is interesting to note that although L is a complex matrix, the resulting matrix, L�1KRL, is a real matrix

and equal to ðLR þ LIÞ�1KRðLR þ LIÞ. In this manner, Ar possesses the same eigenvectors and real part of

eigenvalues as the original matrix and Ai only the imaginary part. Equivalently, the decomposition of a real

matrix A in the real space is

A ¼ ðLR þ LIÞ�1ðKR þ KITÞðLR þ LIÞ: ð5Þ
The original system of equations (1) can then be transformed into the following form:

oW

ot
þ ~KK

oW

ox
¼ 0 ð6aÞ

with

~KK ¼ KR þ KIT ð6bÞ
and

dW ¼ ~LLdU ð6cÞ
with

~LL ¼ LR þ LI; ð6dÞ
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where ~KK and ~LL can be regarded as the pseudo-eigenvalue and pseudo-eigenvector matrixes for the system of

equations, respectively. This is the canonical form for the original system of equations from which several

conclusions can be drawn:
(1) This expression can be applied for a general non-degenerate system of equations without regard to its

hyperbolicity.

(2) For a hyperbolic system (KI ¼ LI ¼ 0), it is identical with its characteristic form.

(3) Even for a linear system, it cannot be reduced to many single independent equations as in the hyper-

bolic case. It requires at least two coupled equations to form a non-hyperbolic system.
3. Numerical scheme

In this section, we will propose a second-order upwind scheme for the non-hyperbolic system of

equations. This scheme is based on the canonical form of the equation system (6a)–(6d). However, as

mentioned in Section 1, there is an alternative method which decouples the system of equations into many

single equations and then solves these equations sequentially. Therefore, before proposing our suitable

scheme, we first indicate some deficiency of this method by analyzing its solution for a simple linear

hyperbolic system.

3.1. Analysis of sequential treatment

Consider the following linear hyperbolic system of equations:

ou
ot

� 5
ou
ox

� 21
ov
ox

¼ 0;
ov
ot

þ 2
ou
ox

þ 8
ov
ox

¼ 0;

which indicates the corresponding coefficient matrix

A ¼ �5 �21

2 8

� �
:

The resulting eigenvalues for this coefficient matrix are k1 ¼ 1 and k2 ¼ 2 , which depict a spatially one-way
characteristics in the equation system. However, usage of sequential treatment, where the upwind sense is

determined by the elements in coefficient matrix, will show a spatially two-way characteristics in the re-

sulting difference equations

unþ1
i ¼ uni þ

5Dt
Dx

ðuniþ1 � uni Þ þ
21Dt
Dx

ðvniþ1 � vni Þ;
vnþ1
i ¼ vni �

2Dt
Dx

ðuni � uni�1Þ �
8Dt
Dx

ðvni � vni�1Þ;

where Dt and Dx are the adopted time step and grid spacing, respectively. By using the standard normal-

mode analysis with the following assumed difference solution:

uðx; tÞ ¼ ~uuðtÞ expðjkxÞ; vðx; tÞ ¼ ~vvðtÞ expðjkxÞ;

we can find the amplification factor matrix for these difference equations:
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~UUðt þ DtÞ ¼ Anum
~UUðtÞ

with ~UU ¼ ð~uu; ~vvÞT and

Anum ¼
1þ 5Dt

Dx ½expðjkDxÞ � 1� 21Dt
Dx ½expðjkDxÞ � 1�

� 2Dt
Dx ½1� expð�jkDxÞ� 1� 8Dt

Dx ½1� expð�jkDxÞ�

 !
;

where k is the imposed wave number with 06 kDx6 p. The stability and accuracy of a difference scheme can

be analyzed by comparing the numerical amplification factor matrix with the exact one for the differential

equation [13]. Therefore, direct numerical computation shows this difference scheme is unstable

maxðjkðAnumÞjÞ > 1:

That is, from this simple analysis for a linear hyperbolic system of equations, it is shown that the sequential

treatment on coupled equations may produce unstable numerical solution. Therefore, it should be very

prudent to extend the sequential treatment to solve a general non-hyperbolic system of equations. Such an
analysis also illustrates the necessity to develop an accurate and stable method for the non-hyperbolic system.

3.2. Model non-hyperbolic system

Since a non-hyperbolic system is composed of at least two coupled equations, we consider the simplest

linear non-hyperbolic system expressed as

ou
ot

þ kR
ou
ox

þ kI
ov
ox

¼ 0; ð7aÞ
ov
ot

� kI
ou
ox

þ kR
ov
ox

¼ 0: ð7bÞ

Obviously, the eigenvalues for this system are k1 ¼ kR þ jkI and k2 ¼ kR � jkI, which also reveals the fol-

lowing relation:

K ¼ KR þ jKI ¼
kR 0

0 kR

� �
þ j

kI 0

0 �kI

� �
:

Following the same line of reason to develop the upwind scheme for hyperbolic system [14], we will derive

the exact solution for these equations and construct its difference counterpart based on this solution.

Without loss of generality, we further assume the initial solution

uðx; 0Þ ¼ u0ðxÞ and vðx; 0Þ ¼ v0ðxÞ; ð7cÞ

then the exact solution for these equations can be easily found

uðx; tÞ þ jvðx; tÞ ¼ u0ðx� kRt þ jkItÞ þ jv0ðx� kRt þ jkItÞ: ð8Þ

Based on this exact solution, an approximate solution can be obtained if the initial distribution around

ðxi ¼ iDx; t ¼ nDtÞ is expressed by the following polynomial:

uðx; tÞ � uni þ
dxuni
Dx

ðx� xiÞ þ
1

2

d2xu
n
i

Dx2
ðx� xiÞ2; ð9aÞ
vðx; tÞ � vni þ
dxvni
Dx

ðx� xiÞ þ
1

2

d2xv
n
i

Dx2
ðx� xiÞ2; ð9bÞ
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where uni denotes the variable u at ðxi ¼ iDx; t ¼ nDtÞ. The discretized solution at ðxi; t þ DtÞ satisfying the

exact solution (8) reads:

unþ1
i ¼ uni �

kRDt
Dx

dxuni �
kIDt
Dx

dxvni þ
1

2
ðk2R � k2I Þ

Dt
Dx

� �2

d2xu
n
i þ kRkI

Dt
Dx

� �2

d2xv
n
i ; ð10aÞ
vnþ1
i ¼ vni �

kRDt
Dx

dxvni þ
kIDt
Dx

dxuni þ
1

2
ðk2R � k2I Þ

Dt
Dx

� �2

d2xv
n
i � kRkI

Dt
Dx

� �2

d2xu
n
i ; ð10bÞ

where dx and d2x represent the first and second spatial differences, respectively,

dxui ¼ uiþ1=2 � ui�1=2 and d2xui ¼ dxuiþ1=2 � dxui�1=2: ð10cÞ

These two quantities must be appropriately represented by nodal values to give a suitable difference scheme.

Eqs. (10a)–(10c) is a second-order accurate numerical approximation for the non-hyperbolic system (7a)–

(7c). Furthermore, the approximate solution can be rewritten as

Wnþ1
i ¼ Wn

i �
Dt
Dx

~KKdxW
n
i þ

1

2

Dt
Dx

� �2

~KK2d2xW
n
i ð11aÞ

with

W ¼ u
v

� �
; dxW ¼ dxu

dxv

� �
; d2xW ¼ d2xu

d2xv

� �
ð11bÞ

and the pseudo-eigenvalue matrix, ~KK , becomes

~KK ¼ KR þ KIT ¼ kR kI
�kI kR

� �
: ð11cÞ

From the discretized representation (11a)–(11c) for the canonical equation (7a)–(7c), the approximation
with the same accuracy as for the linear non-hyperbolic system can be equivalently deduced. This is also the

basic idea of present work.
3.3. Proposed scheme

Although the above derivation is based on a simple two-equation system, the resulting discretized

solution (11a)–(11c) can be equally applied to a general linear system of equations (1) if the eigensystem of

coefficient matrix is transformed into its canonical form (6a)–(6d). Following the same methodology

employed in solving hyperbolic system, discretized approximation ((10a)–(10c) or (11a)–(11c)) can be

rearranged as an two-step upwind scheme:

Wnþ1
i ¼ Wn

i �
Dt
Dx

~KKðWnþ1=2
iþ1=2 �W

nþ1=2
i�1=2 Þ ð12aÞ

with

W
nþ1=2
iþ1=2 ¼ Wn

iþ1=2 �
Dt
2Dx

~KKdxW
n
iþ1=2 ð12bÞ
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In this way, the inter-grid quantity, W
nþ1=2
iþ1=2 , can be regarded as the approximate representation for solution

vector at x ¼ ðiþ ð1=2ÞÞDx and t ¼ ðnþ ð1=2ÞÞDt if the interrelation between discretized spatial and tem-

poral derivatives satisfies the following equation:

dtWþ Dt
Dx

~KKdxW ¼ 0

which is also the discretized approximation for the canonical equation (6a)–(6d). In Eq. (12), various

discretized representations of Wn
iþ1=2 and dxW

n
iþ1=2 will yield different difference schemes. Therefore, to

provide an upwind difference scheme, we introduce the left- and right-side expressions for W
nþ1=2
iþ1=2 [15]:

WL
iþ1=2 ¼ Wi þ

oW

ox

� �L

i

Dx
2

þ oW

ot

� �L

i

Dt
2

¼ Wi þ
Dx
2

�
� Dt

2
~KK

�
oW

ox

� �L

i

; ð13aÞ
WR
iþ1=2 ¼ Wiþ1 �

oW

ox

� �R

iþ1

Dx
2

þ oW

ot

� �R

iþ1

Dt
2

¼ Wiþ1 �
Dx
2

�
þ Dt

2
~KK

�
oW

ox

� �R

iþ1

: ð13bÞ

For the upwind scheme adopted in the present work, this inter-grid quantity in Eq. (12b) can be generalized as

W
nþ1=2
iþ1=2 ¼ 1

2
ðWR

iþ1=2 þWL
iþ1=2Þ �

1

2
~KK�1 ~KK
��� ���ðWR

iþ1=2 �WL
iþ1=2Þ ð14Þ

with appropriate selection for j~KKj, which will be subsequently described. In the case of hyperbolic system,

the absolute function of a diagonal matrix is defined as

Kj j ¼ diagðjk1j; jk2j; . . . ; jkN jÞ; ð15Þ

where all the ki are real. For non-hyperbolic system, the modified eigenvalue matrix (6a)–(6d) composed of

two parts: KR with all real eigenvalues and KIT with all imaginary eigenvalues. Therefore, the absolute

function of KR is chosen with the identical form (15) to guarantee the same formulation can be equally

applied in a hyperbolic system. As for KIT, various forms can be suggested such as in the central difference

scheme

jKITj ¼ 0:

However, such a selection will yield two uncoupled difference equation sets if KR ¼ 0, which may conse-

quently result in oscillatory solution with deteriorate accuracy. In the present work, we propose the same

upwind treatment for KIT as for KR

jKITj ¼ jKIjT:

Therefore, the adopted absolute function of the modified eigenvalue matrix becomes

j~KKj ¼ jKR þ KITj ¼ jKRj þ jKIjT: ð16Þ

Different expressions for the spatial derivatives for the left- and right-side values will lead to various

types in the upwind schemes category [14]:

oW

ox

� �L

i

¼ 0 as the first-order upwind scheme ð1UDÞ; ð17aÞ

oW

ox

� �L

i

¼
Wn

iþ1 �Wn
i

Dx
as the Lax–Wendroff scheme ðLWÞ; ð17bÞ
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oW

ox

� �L

i

¼ Wn
i �Wn

i�1

Dx
as the Warming–Beam scheme ðWBÞ; ð17cÞ

and

oW

ox

� �L

i

¼ Wn
iþ1 �Wn

i�1

2Dx
as the Fromm scheme; ð17dÞ

ðoW=oxÞRiþ1 should be treated similarly. All these schemes except 1UD can be easily shown to be second-

order accurate with the standard modified equation analysis [13]. For example, adoption of Fromm scheme
(17d) will yield the following difference equation (assuming non-negative kR and kI):

unþ1
i ¼ uni �

kRDt
Dx

ðuni � uni�1Þ �
kIDt
Dx

ðvni � vni�1Þ þ
Dt
4Dx

ðk2R
�

� k2I Þ
Dt
Dx

� kR

�
ðuniþ1 � uni � uni�1 þ uni�2Þ

þ Dt
4Dx

2kRkI
Dt
Dx

�
� kI

�
ðvniþ1 � vni � vni�1 þ vni�2Þ; ð18aÞ
vnþ1
i ¼ vni �

kRDt
Dx

ðvni � vni�1Þ þ
kIDt
Dx

ðuni � uni�1Þ �
kRkI
4

Dt
Dx

� �2

ðuniþ1 � uni � uni�1 þ uni�2Þ

þ kRDt
4Dx

kR
Dt
Dx

�
� 1

�
ðvniþ1 � vni � vni�1 þ vni�2Þ �

kIDt
4Dx

kR
Dt
Dx

�
þ 1

�
ðuniþ2 � uniþ1 � uni þ uni�1Þ

� kIDt
2Dx

� �2

ðvniþ2 � vniþ1 � vni þ vni�1Þ: ð18bÞ

The equivalent equation system solved by this scheme can be obtained with the Taylor series expansion:

oW

ot
þ ~KK

oW

ox
¼ � 1

2

o2W

ot2

�
þM

o2W

ox2

�
Dt þOðDt2Þ; ð18cÞ

where

M ¼ k2I � k2R �2kRkI
2kRkI k2I � k2R

� �
¼ �~KK2:

Therefore, the resulting modified equation becomes

oW

ot
þ ~KK

oW

ox
¼ � 1

2
ð~KK2 þMÞ o

2W

ox2
Dt þOðDt2Þ ¼ OðDt2Þ; ð18dÞ

which depicts a second-order accurate representation for the original equation system (7a)–(7c). In addition
to the above-mentioned linear schemes (17a)–(17d), limiter functions for non-oscillatory solution for hy-

perbolic system can also be employed as to modify the inter-grid quantities [16]. However, it should be

noted that, for an unstable non-hyperbolic system, the limiter function may induce high-frequency com-

ponents in the resulting numerical solution and rapidly deteriorate the solution accuracy. Therefore, the

applications of limiter functions should be confined in solving stable non-hyperbolic equation systems. It is

obvious that all the derivations given above are very akin to those for hyperbolic system except the pseudo-

eigenvalue matrix, ~KK.
For the linear system of equations, difference scheme for the transformed variables in the canonical

equations can be easily converted into that for the original solution vector. Therefore, if the coefficient

matrix is decomposed as in Eqs. (2a)–(2c), the resulting difference scheme for the original equation (1) is
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UL
iþ1=2 ¼ Ui þ

Dx
2

�
� Dt

2
A

�
oU

ox

� �L

i

; ð19aÞ
UR
iþ1=2 ¼ Uiþ1 �

Dx
2

�
þ Dt

2
A

�
oU

ox

� �R

iþ1

; ð19bÞ
Unþ1
i ¼ Un

i �
Dt
Dx

ðFN
iþ1=2 � FN

i�1=2Þ; ð19cÞ
FN
iþ1=2 ¼

1

2
AðUR

iþ1=2 þUL
iþ1=2Þ �

1

2
ðLR þ LIÞ�1ð KRj j þ KIj jTÞðLR þ LIÞðUR

iþ1=2 �UL
iþ1=2Þ; ð19dÞ

where FN
iþ1=2 represents the numerical flux at x ¼ ðiþ ð1=2ÞÞDx. For non-linear conservative equations,

oU

ot
þ oF

ox
¼ 0; ð20aÞ
oF

oU
¼ A; ð20bÞ

the above expressions (19a)–(19d) are still applicable, except the numerical flux (19d) being modified as

FN
iþ1=2 ¼

1

2
½FðUR

iþ1=2Þ þ FðUL
iþ1=2Þ� �

1

2
ðLR þ LIÞ�1ðj�KKRj þ j�KKIjTÞðLR þ LIÞðUR

iþ1=2 �UL
iþ1=2Þ: ð20cÞ

Selection of coefficient matrix between the right and left states should satisfy the general jump condition

[17]

�AAðUR �ULÞ ¼ FðURÞ � FðULÞ: ð20dÞ
3.4. Numerical analysis

The proposed scheme will be reduced to the conventional upwind scheme for a hyperbolic system

(LI ¼ KI ¼ 0). Therefore, it can provide the same stable and accurate results as the conventional upwind

scheme if the equation system becomes hyperbolic. In this subsection, we employ the normal-mode analysis

to investigate the effects of imaginary part of a complex eigenvalue on the solution stability. For this

analysis, consider the solution vector expressed as

Wðx; tÞ ¼ ~WWðtÞ expðjkxÞ ð21aÞ

substituted into the model equations (7a)–(7c) to yield the exact amplification matrix

~WWðt þ DtÞ ¼ Aex
~WWðtÞ ð21bÞ

with

Aex ¼
coshðCIhÞ �j sinhðCIhÞ
j sinhðCIhÞ coshðCIhÞ

� �
expð�jCRhÞ; ð21cÞ

where CR and CI are the associated Courant number based on the real and imaginary parts of eigenvalues

of coefficient matrix, respectively.
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CR ¼ kRDt
Dx

and CI ¼
kIDt
Dx

:

Without loss of generality, we further assume CR and CI to be non-negative. In the above equation, h is the

dimensionless wave number, h ¼ kDx:
Characteristics of exact solution can be achieved by the eigenvalues of the exact amplification matrix

(21c)

k1ðAexÞ ¼ expðCIhÞ expð�jCRhÞ and k2ðAexÞ ¼ expð�CIhÞ expð�jCRhÞ: ð22Þ

Eigenvalues of the exact amplification matrix indicate that solution of a pure non-hyperbolic system will
exponentially grow with its growth rate proportional to the wave number, k. From this analysis, one can

conclude that real part of complex eigenvalue is responsible for the propagation of information without

attenuation. The solution amplification for a pure non-hyperbolic system is completely determined by the

imaginary part of complex eigenvalue.

For convenience, characteristics of our proposed scheme will be demonstrated by considering the first-

order upwind scheme (17a). As applied to model equations (7a)–(7c), the resulting difference equations

become

unþ1
i ¼ uni �

kRDt
Dx

ðuni � uni�1Þ �
kIDt
Dx

ðvni � vni�1Þ; ð23aÞ
vnþ1
i ¼ vni þ

kIDt
Dx

ðuniþ1 � uni Þ �
kRDt
Dx

ðvni � vni�1Þ; ð23bÞ

which lead to the amplification matrix,

A1UD ¼ 1� CR½1� expð�jhÞ� �CI½1� expð�jhÞ�
CI½expðjhÞ � 1� 1� CR½1� expð�jhÞ�

� �
ð24aÞ

and the associated eigenvalues

k1ðA1UDÞ ¼ 1� CR½1� cosðhÞ� þ 2CI sin
h
2

� �
� jCR sinðhÞ; ð24bÞ
k2ðA1UDÞ ¼ 1� CR½1� cosðhÞ� � 2CI sin
h
2

� �
� jCR sinðhÞ: ð24cÞ

Because solution for a non-hyperbolic system will grow exponentially, it is suggested that the stability

requirement for a numerical scheme should be defined as

max½jkðAnumÞj�6 maxf1;max½jkðAexÞj�g: ð25Þ

With the assumed non-negative eigenvalues, the stability criterion for this scheme (23a), (23b) will be

jk1UD;1j ¼ j1� CR½1� cosðhÞ� þ 2CI sinðh=2Þ � jCR sinðhÞj6 expðCIhÞ ¼ jkex;1j: ð26Þ

It is very difficult to obtain an explicit expression for the corresponding time step constraint from the

stability criterion (26). However, a sufficient condition for the smooth solution (h ! 0) can be found with

approximate series expansion

jk1UD;1j2 � 1þ 2CIhþ ðC2
I þ C2

R � CRÞh2 �
1

12
ðCI þ 12CRCIÞh3 þ � � �
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jkex;1j2 � 1þ 2CIhþ 2C2
I h

2 þ 4

3
C3

I h
3 þ � � �

Substitution these expressions into the stability criterion (26) will yield the following condition:

C2
R � CR � C2

I 6 0; ð27aÞ

which implies the time step constraint

Dt6
kRDx

maxð0; k2R � k2I Þ
: ð27bÞ

With direct numerical manipulation, we can find that this condition also satisfies the stability criterion

(26) in the practical wave number range (06 h6p). Compared with the stability criterion for the

hyperbolic systems, it is interesting to note that existence of imaginary part of eigenvalues will dictate a

positive effect on the stability of this first-order upwind scheme for the specified wave number. How-

ever, it should also be noted that the above stability analysis is based on the imposed wave number and
the time-step constraint equations (27a), (27b) may not quarantine a practically stable solution since the

information grow rate is dependent on the wave number for an unstable non-hyperbolic system. Any

disturbance with high-frequency component will eventually grow and pollute the calculated result. In a

later section, this phenomenon will be demonstrated with a numerical example and the time when the

high-frequency evolves to overwhelm the useful information can be determined from the amplification

matrix.

Similar results can also be derived for the Fromm scheme equations (18a)–(18d), which yields the re-

sulting amplification matrix:

AFromm ¼ a11 a12
a21 a22

� �
ð28Þ

with

a11 ¼ 1� CR½1� expð�jhÞ� � CR � C2
R þ C2

I

4
½expðjhÞ � 1� expð�jhÞ þ expð�j2hÞ�;
a12 ¼ �CI½1� expð�jhÞ� � CRCI

4
½expðjhÞ � 1� expð�jhÞ þ expð�j2hÞ�;
a21 ¼ CI½expðjhÞ � 1� � CRCI

4
½expðjhÞ � 1� expð�jhÞ þ expð�j2hÞ�

� CI þ CRCI

4
½expðj2hÞ � expðjhÞ � 1þ expð�jhÞ�;
a22 ¼ 1� CR½1� expð�jhÞ� � CR � C2
R

4
½expðjhÞ � 1� expð�jhÞ þ expð�j2hÞ�

� C2
I

4
½expðj2hÞ � expðjhÞ � 1þ expð�jhÞ�:

It is noted that all the above numerical analyses are valid for linear systems. Therefore, analyses of the

difference schemes, which are based on the transformed system, can be equally applied to the equivalent

original equations.



Y.-H. Hwang / Journal of Computational Physics 192 (2003) 643–676 655
4. Extension to degenerate system

The above derivations are based on the non-degenerate systems and can be easily extended to solve the

degenerate cases. For a general system of equations (1), the coefficient matrix can be decomposed with

Jordan decomposition [12]:

A ¼ X�1JX ð29aÞ

with

J ¼ diagðJ1; . . . ; JSÞ; ð29bÞ

where X is a non-singular matrix and the Jordan blocks, Ji, is a mi � mi matrix

Ji ¼

ki 1 0 0 0 0

0 ki 1 0 0 0

0 0 : : 0 0

0 0 0 : : 0

0 0 0 0 ki 1

0 0 0 0 0 ki

0
BBBBBB@

1
CCCCCCA

ð29cÞ

with m1 þ m2 þ � � � þ mS ¼ N and S is the rank of coefficient matrix A. Although coefficient matrix is a real

matrix, the decomposed components, X and J may contain complex quantities

X ¼ XR þ jXI and J ¼ JR þ jJI: ð30Þ

Following the same procedure for non-degenerate case, the coefficient matrix can be expressed as

A ¼ ðXR þ XIÞ�1ðJR þ JITÞðXR þ XIÞ ð31Þ

and the original system of equations (1) can be transformed into its canonical form

oW

ot
þ ~JJ

oW

ox
¼ 0 ð32aÞ

with

~JJ ¼ JR þ JIT ð32bÞ

and

dW ¼ ~XXdU ð32cÞ

with

~XX ¼ XR þ XI: ð32dÞ

This equation is analogous to the canonical equation for the non-degenerate system (6a)–(6d) except that

the eigenvalue matrix is replaced by the Jordan blocks. Therefore, the numerical scheme for a linear non-

degenerate system (19a)–(19d) can be easily extended to include the degenerate situation if the numerical

flux function (19d) is expressed as

FN
iþ1=2 ¼

1

2
AðUR

iþ1=2 þUL
iþ1=2Þ �

1

2
ðXR þ XIÞ�1ð JRj j þ JIj jTÞðXR þ XIÞðUR

iþ1=2 �UL
iþ1=2Þ ð33aÞ
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with suitable construction for the absolute function of a bi-diagonal matrix, jJRj

jJRj ¼ diagðjJ1;Rj; jJ2;Rj; . . . ; jJS;RjÞ ð33bÞ

and

jJi;Rj ¼

jki;Rj 1 0 0 0 0
0 jki;Rj 1 0 0 0

0 0 : : 0 0

0 0 0 : : 0

0 0 0 0 jki;Rj 1

0 0 0 0 0 jki;Rj

0
BBBBBB@

1
CCCCCCA
: ð33cÞ

Similar treatment can be employed for the non-linear conservative equations and the numerical flux

function (20c) can be modified as

FN
iþ1=2 ¼

1

2
½FðUR

iþ1=2Þ þ FðUL
iþ1=2Þ� �

1

2
ðXR þ XIÞ�1ðjJRj þ jJIjTÞðXR þ XIÞðUR

iþ1=2 �UL
iþ1=2Þ: ð33dÞ

To validate the above proposition, we analyze the following simplest degenerate system of equations:

ou
ot

þ k
ou
ox

þ ov
ox

¼ 0; ð34aÞ
ov
ot

þ k
ov
ox

¼ 0 ð34bÞ

imposed with the general initial condition (7c). The exact solution for these equations is

uðx; tÞ ¼ u0ðx� ktÞ � tv00ðx� ktÞ; ð35aÞ
vðx; tÞ ¼ v0ðx� ktÞ; ð35bÞ

where

v;0ðgÞ ¼
dv0ðxÞ
dx

����
x¼g

: ð35cÞ

If the initial distribution is approximated by the polynomial (9a),(9b) and substituted into Eq. (35a)–(35c),

the discretized solution at next time step will be

unþ1
i ¼ uni �

kDt
Dx

dxuni þ
1

2

kDt
Dx

� �2

d2xu
n
i �

Dt
Dx

dxvni þ k
Dt
Dx

� �2

d2xv
n
i ; ð36aÞ
vnþ1
i ¼ vni �

kDt
Dx

dxvni þ
1

2

kDt
Dx

� �2

d2xv
n
i ; ð36bÞ

which can be further rewritten as

Wnþ1
i ¼ Wn

i �
Dt
Dx

~JJdxW
n
i þ

1

2

Dt
Dx

� �2

~JJ2d2xW
n
i ; ð37Þ
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where the solution vector W is defined as in Eq. (11b). This approximate discretized solution is akin to that

for hyperbolic system (11a)–(11c) except that the pseudo-eigenvalue matrix is replaced by the modified

Jordan blocks. Therefore, the same difference scheme derived for the non-degenerate coefficient matrix can
be equally applied for the degenerate system. Numerical analysis shows the stability criterion for this model

equation:

Cr ¼
jkjDt
Dt

6 1

if the first-order scheme is employed.
5. Inter-drag and diffusion terms

As mentioned before, additional inter-drag and diffusion terms may stabilize the non-hyperbolic system.

Effects of these terms on the resulting solution can be studied to demonstrate the solution behavior of a

stable non-hyperbolic system. For convenience, we consider the following model equations:

ou
ot

þ kR
ou
ox

þ kI
ov
ox

þ fdðu� vÞ � l
o2u
ox2

¼ 0; ð38aÞ
ov
ot

� kI
ou
ox

þ kR
ov
ox

þ fdðv� uÞ � l
o2v
ox2

¼ 0 ð38bÞ

or expressed in vector form:

oW

ot
þ A

oW

ox
þ CW� l

o2W

ox2
¼ 0 ð39aÞ

with

W ¼ u
v

� �
; A ¼ kR kI

�kI kR

� �
and C ¼ fd

1 �1

�1 1

� �
; ð39bÞ

where fd and l are the non-negative inter-drag and diffusion coefficients, respectively. Effect of inter-drag

term is to decrease the difference between solution vectors; whereas, the diffusion term will decrease the

spatial gradient of solution vectors. Using the same normal-mode analysis and substituting the exact so-

lution

Wðx; tÞ ¼ ~WWðtÞ exp½jkðx� kRtÞ� ð40aÞ

into the differential equation (38), the associated equation for the solution amplitude ~WWðtÞ can be found

d ~WW

dt
þ ~AA ~WW ¼ 0 ð40bÞ

with

~AA ¼ fd þ lk2 jkkI � fd
�jkkI � fd fd þ lk2

� �
: ð40cÞ
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Eigenvalues of ~AA are

~kk1ð~AAÞ ¼ fd þ lk2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
d þ k2k2I

q
; ð41aÞ
~kk2ð~AAÞ ¼ fd þ lk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
d þ k2k2I

q
: ð41bÞ

It is worth noting that the amplitude evolution matrix, ~AA, does not influenced by the real part of complex

eigenvalues, kR. That is, kR determines the information propagation speed and does not affect its evolution

amplitude. This phenomenon can also be observed in the pure non-hyperbolic system (22). The stability

criterion for the system is that all eigenvalues of ~AA must be non-negative. This criterion leads to the fol-

lowing relation:

l2k4 þ ð2lfd � k2I Þk2 P 0: ð42Þ
Based on this condition, several interesting conclusions can be drawn for the non-hyperbolic system with
kI 6¼ 0:

(i) If the system is without diffusion term ðl ¼ 0Þ, it will be still unstable. That is, existence of diffusion

term is a necessary condition to stabilize the non-hyperbolic system.

(ii) If the system is without inter-drag term (fd ¼ 0), solution with high wave number, kP kI=l, will be
stabilized; nevertheless, low frequency solution is still unstable.

(iii) For any combination of inter-drag and diffusion terms, the critical wave number can be found:

kCR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2I � 2lfdÞ=l2

q
: ð43aÞ

Solution can be stabilized if the imposed wave number larger than the critical one, k > kCR.
(iv) The condition for a stable solution can be derived by requiring stability for all wave-number k in Eq.

(42)

lfd P
1

2
k2I ; ð43bÞ

which also implies the required viscosity to stabilized all wave-number without inter-drag term will

become infinity. In other words, a system without diffusion term is always unstable and a stable system

must possess both the inter-drag and diffusion terms. It is easier to stabilize a solution with high wave

number than with low wave number. These conclusions can be further employed to interpret the

numerical results in this study.

The numerical treatments for these terms are not trivial, since the effects of inter-drag term may result in

an impractically refined time step for a stable solution. This is the so-called stiff problem in the equation

system with significant source terms. To avoid such a disadvantage, we employ the exponential time dif-
ferencing [18] and rearrange the original equation system

oU

ot
þ A

oU

ox
þ CU� l

o2U

ox2
¼ 0 ð44aÞ

as

oU�

ot
þ A� oU

�

ox
� l

o2U�

ox2
¼ 0 ð44bÞ

by setting

U� ¼ expðCtÞU and A� ¼ expðCtÞAexpð�CtÞ: ð44cÞ
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In Eqs. (44a)–(44c), the stiff problem due to inter-drag term has been eliminated. The numerical scheme

(19a)–(19d) should be modified as

UL
iþ1=2 ¼ exp

�
� C

Dt
2

�
Un

i

"
þ Dx

2

�
� Dt

2
A

�
oU

ox

� �L

i

þ l
Dt
2

o2U

ox2

� �n

i

#
; ð45aÞ
UR
i�1=2 ¼ exp

�
� C

Dt
2

�
Un

i

"
� Dx

2

�
þ Dt

2
A

�
oU

ox

� �R

i

þ l
Dt
2

o2U

ox2

� �n

i

#
; ð45bÞ

where ðoU=oxÞLi and ðoU=oxÞRi are given as in Eqs. (17a)–(17d) and ðo2U=ox2Þni can be represented by the

central-difference form

o2U

ox2

� �n

i

¼
Un

iþ1 � 2Un
i þUn

i�1

Dx2
: ð45cÞ

We further define

~UUi ¼
1

2
ðUL

iþ1=2 þUR
i�1=2Þ ð45dÞ

and the resulting difference expression is

Unþ1
i ¼ expð�CDtÞUn

i �
Dt
Dx

exp

�
� C

Dt
2

�
FC
iþ1=2

h
� FC

i�1=2 � FD
iþ1=2 þ FD

i�1=2

i
; ð45eÞ

where the convective flux, FC
iþ1=2, is given as in Eq. (19d) and the diffusive flux, FD

iþ1=2, is expressed as

FD
iþ1=2 ¼ l

~UUiþ1 � ~UUi

Dx
: ð45fÞ

For the non-linear system

oU

ot
þ oF

ox
þ CU� l

o2U

ox2
¼ 0 ð46aÞ

and

oF

oU
¼ A: ð46bÞ

Eqs. (45a) and (45b) should be modified as

UL
iþ1=2 ¼ exp �Cn

i

Dt
2

� �
Un

i

"
þ Dx

2

�
� Dt

2
An

i

�
oU

ox

� �L

i

þ l
Dt
2

o2U

ox2

� �n

i

#
; ð47aÞ
UR
i�1=2 ¼ exp

�
� Cn

i

Dt
2

�
Un

i

"
� Dx

2

�
þ Dt

2
An

i

�
oU

ox

� �R

i

þ l
Dt
2

o2U

ox2

� �n

i

#
ð47bÞ

with

Cn ¼ CðUnÞ and An ¼ AðUnÞ ð47cÞ
i i i i
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and Eq. (45e) modified as

Unþ1
i ¼ exp

�
� ~CCiDt

�
Un

i �
Dt
Dx

exp

�
� ~CCi

Dt
2

�
FC
iþ1=2

h
� FC

i�1=2 � FD
iþ1=2 þ FD

i�1=2

i
ð47dÞ

with

~CCi ¼ Cð~UUiÞ: ð47eÞ

Although there may exist other possible expressions for the intermediate quantities in (45d), (47c) and (47e),

they are chosen in these simple forms to yield a second-order accurate difference expression for original

equation (44a). With some necessary symbolic manipulations, it can be shown that this expression will lead
to a second-order accurate scheme. For example, the Fromm scheme (17d) will yield the following

equivalent equation:

oU

ot
þ A

oU

ox
þ CU� l

o2U

ox2
¼� 1

2

o2U

ot2

�
� C2U� ðACþ CAÞ oU

ox
� ðA2 � 2lCÞ o

2U

ox2

þ 2lA
o3U

ox3
� l2 o

4U

ox4

�
Dt þOðDt2Þ: ð48Þ

Using the standard procedure to derive modified equation [13], the resulting modified equation can be

shown to be a second-order accurate representation for the original equation (44a)

oU

ot
þ A

oU

ox
þ CU� l

o2U

ox2
¼ OðDt2Þ: ð49Þ

Although this scheme is formerly second-order accurate, it requires much computational load due to the

existence of diffusion term. Therefore, to alleviate the computational burden, this scheme may be relaxed

such that the diffusive term in equations (45a), (45b), (47a) and (47b) are neglected and the diffusive flux

shown in Eq. (45f) is modified as

FD
iþ1=2 ¼ l

Un
iþ1 �Un

i

Dx
: ð50Þ

Although the formal accuracy of the relaxed scheme is reduced to first-order, it is shown that the differences

in computational results between the complete and relaxed schemes are insignificant. Numerical evidence
on the solution accuracy will be given in the following section.
6. Numerical tests

To validate the usefulness of our proposed scheme, we performed a series of numerical computations on

several test examples including linear non-degenerate, linear degenerate, non-linear non-degenerate and non-

linear degenerate equation systems. For non-degenerate systems, inter-drag and diffusion terms are also
considered to elucidate their effects on the solution stability. In these computations, the grid spacing is set as

Dx ¼ 0:01, which has been numerically verified to provide accurate numerical results if the solution remain

stable.All computations are performed in the range of�56 x6 5, which is shown to be large enough such that

the imposed boundary conditions will not affect the resulting solutions in the interested region. For cases

without diffusion term, the time step is chosen as the maximum Courant number based on the real part of

complex eigenvalues being less than 0.5, CR;max ¼ 0:5. For cases with diffusion term, an additional constraint

on time step is introduced. This constraint is based on a dimensionless time step due to diffusion effect:
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Cl ¼
lDt
Dx2

: ð51Þ

Therefore, the chosen time step is set to satisfy both the above constraint for the Courant number and that

for the diffusion effect, Cl 6 0:3. Grid convergence tests are also performed to investigate the effects of grid

spacing on the solution accuracy.

Besides various equation types being solved, a variety of initial conditions, which includes the sinusoidal,

exponential and hyperbolic tangent functions, are assigned. In the following paragraphs, the equations to

be solved, initial conditions, available exact solutions and the resulting numerical results for these test
problems will be subsequently described.

6.1. Linear non-degenerate system

The equation type to be solved in this category is given in Eq. (7a)–(7c) and its exact solution is shown in

Eq. (8). In our calculations, the complex eigenvalue is chosen as

kR ¼ 1:0 and kI ¼ 0:5: ð52Þ

Three types of initial conditions at t ¼ 0 are considered

ðiÞ u0ðxÞ ¼ 0; v0ðxÞ ¼ cosðkxÞ with k ¼ 5p and k ¼ p; ð53aÞ
ðiiÞ u0ðxÞ ¼ 0; v0ðxÞ ¼ coshðkxÞ with k ¼ p=4; ð53bÞ
ðiiiÞ u0ðxÞ ¼ 0; v0ðxÞ ¼ tanhðkxÞ with k ¼ p=2: ð53cÞ

Condition (i) is a sinusoidal distribution, condition (ii) a exponential distribution and condition (iii) a

hyperbolic tangent distribution. The corresponding exact solutions for the equation system and initial
conditions are

ðiÞ uðx; tÞ ¼ sinhðkkItÞ sin½kðx� kRtÞ�; vðx; tÞ ¼ coshðkkItÞ cos½kðx� kRtÞ�; ð54aÞ
ðiiÞ uðx; tÞ ¼ � sinðkkItÞ sinh½kðx� kRtÞ�; vðx; tÞ ¼ cosðkkItÞ cosh½kðx� kRtÞ�; ð54bÞ
ðiiiÞ uðx; tÞ ¼ sinðkkItÞ cosðkkItÞ
sinh2½kðx� kRtÞ� þ cos2ðkkItÞ

; vðx; tÞ ¼ sinh½kðx� kRtÞ� cosh½kðx� kRtÞ�
sinh2½kðx� kRtÞ� þ cos2ðkkItÞ

: ð54cÞ

Fig. 1(a) demonstrates the calculation results for initial condition (i) and k ¼ 5p at t ¼ 0:5 with first-

order upwind scheme (17a). Corresponding exact solution is also included in this figure for comparison.

From Fig. 1(a), it is shown that the computational result will increase indefinitely and, however, its growth

rate is less than that of exact solution. In this sense, the numerical scheme can be regarded as a stable
scheme. Meanwhile, significant diffusive effects for the numerical scheme are also observed in this figure.

These phenomena are coincident with the previous normal-mode analysis for the differential and difference

equations. Results with second-order accurate Fromm scheme (17d) for this problem is depicted in Fig. 1(b).

Compared with first-order scheme, the Fromm scheme provides more accurate results as in the simulations

of hyperbolic equation systems. For smaller wave number with k ¼ p, Fig. 2(a) shows the computational

results with Fromm scheme at t ¼ 0:5, which is in agreement with the exact solution. However, as time

increases, high frequency error inherent in the calculation will grow and finally overwhelm the useful in-

formation. These phenomena can be observed in Figs. 2(b) and (c) for t ¼ 0:775 and t ¼ 0:8, respectively. In
general, it is quite difficult to completely eliminate this spurious artifact for a numerical scheme to simulate



Fig. 1. Computational results for linear non-degenerate system with initial condition (i) and k ¼ 5p at t ¼ 0:5: (a) the first-order

scheme, (b) the Fromm scheme.
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an ill-posed problem. For problems of initial condition (ii) and initial condition (iii), Figs. 3 and 4 show the

computational results compared with exact solutions at t ¼ 1:0. These results are obtained by the Fromm

scheme. As shown in these figures, the proposed scheme can accurately simulate non-degenerate equation

system if the useful information is not significantly polluted by the high frequency errors. To investigate the

effects of grid spacing on the solution accuracy and demonstrate the characteristics of the numerical
solution for the non-hyperbolic system, we define the error measure for the calculated result

En ¼
XiE
i¼iS

ðuE;i

"(
� uC;iÞ2 þ ðvE;i � vC;iÞ2

#,
ðiE � iS þ 1Þ

)1=2

; ð55Þ

where iS and iE are the starting and ending nodal indexes in the interested domain (�26 x6 2), respectively.

Subscripts E and C, respectively, denote the exact and calculated solutions. Fig. 5(a) illustrates the effects of

grid spacing on the solution accuracy obtained by 1UD and Fromm schemes for problem of initial con-

dition (i) and k ¼ p at t ¼ 0:5. These results are obtained with a constant maximum Courant number based

on the real part of complex eigenvalues, CR;max ¼ 0:5. It is clearly shown that as Dx decreases from the
coarse spacing (Dx ¼ 0:1), the solution error will first decrease, then reach a minimum value, and finally

increase rapidly to depict a polluted solution. This is the general scenario of a numerical solution for an

unstable non-hyperbolic system [11]. That is, for a given evolution time, there is a grid spacing constraint to

avoid a contaminated solution. Meanwhile, Fig. 5(a) also illustrates the Fromm and 1UD schemes will,

respectively, provide second-order and first-order accurate solutions if the solution has not been over-

whelmed by the high-frequency error. Evolutions of solution errors for this case with Dx ¼ 0:01 are shown

in Fig. 5(b). From this figure, one can observe that the solution error will mildly increase if the calculated

solution has not been polluted. However, after a certain time, the solution error will increase dramatically
which implies the solution has been contaminated by the high-frequency error. This critical time can be

estimated from the information growth rate indicated in the amplification matrix of a difference scheme

(24a)–(24c) and (28). Let kk be the amplification factor of a specific wave-number, k, and define the

maximum information growth rate,

kmax ¼ Max
jkDxj6p

kk: ð56aÞ



Fig. 2. Computational results for linear non-degenerate system with initial condition (i) and k ¼ p by the Fromm scheme: (a) t ¼ 0:5,

(b) t ¼ 0:775, (c) t ¼ 0:8.
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Since the amplitude of disturbance existing in the initial condition can be assumed to be equal to machine

rounding error, 10�e, the critical time, s, at which the disturbance shows a comparable amount as the useful

information can be estimated to satisfy the following relation:

10�e � kk
kmax

� �s=Dt

ð56bÞ

or

s � eDt= logðkmax=kkÞ: ð56cÞ

In the present example with assigned computational parameters (k ¼ p, Dx ¼ 0:01, CR ¼ 0:5 and CI ¼ 0:25),
the information growth rates for 1UD (24a)–(24c) and Fromm (28) schemes can be obtained from direct

numerical evaluations



Fig. 3. Computational results for linear non-degenerate system with initial condition (ii) at t ¼ 1:0 by the first-order scheme.

Fig. 4. Computational results for linear non-degenerate system with initial condition (iii) at t ¼ 1:0 by the first-order scheme.

Fig. 5. Solution error for linear non-degenerate system with initial condition (i) and k ¼ p: (a) effect of grid spacing at t ¼ 1:0, (b) time

evolution with Dx ¼ 0:01.
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kmax

kk

� �
1UD

¼ 1:0946 and
kmax

kk

� �
Fromm

¼ 1:2656 ð57aÞ

and the corresponding critical times for the present machine rounding error (e ¼ 16) are

s1UD � 2:037 and sFromm � 0:782: ð57bÞ

These critical times are in very agreement with those depicted in Fig. 5(b) (En ¼ 1). For comparison, the
critical time for the differential system can also be estimated from amplification factor in Eq. (22)

sdiff � 2:3025e=kI=ðp=Dx� kÞ ¼ 0:2369; ð57cÞ

which is less than those for 1UD and Fromm schemes.

6.2. Linear degenerate system

The equation type to be solved in this category is listed in Eq. (34) and its exact solution can be derived

from Eq. (35). Eigenvalue for the present calculations is set to be k ¼ 1:0. Various initial conditions as in
Eq. (53) are assigned and their corresponding exact solutions are

ðiÞ uðx; tÞ ¼ tk sin½kðx� ktÞ�; vðx; tÞ ¼ cos½kðx� ktÞ�; ð58aÞ
ðiiÞ uðx; tÞ ¼ �tk sinh½kðx� ktÞ�; vðx; tÞ ¼ cosh½kðx� ktÞ�; ð58bÞ
ðiiiÞ uðx; tÞ ¼ �tk sech2½kðx� ktÞ�; vðx; tÞ ¼ tanh½kðx� ktÞ�: ð58cÞ

Since the equation system is degenerate and its eigenvalue is not a complex number, the increasing rate of

information is linearly proportional to the wave number. As compared with the exponential growth rate in

previous non-degenerate system, the high frequency error inherent in this degenerate system will not se-
verely influence the useful information if the following condition is satisfied:

10�e p
Dx

� k: ð59Þ

Figs. 6(a) and (b) illustrate the computational results for the initial condition (i) with k ¼ 5p at t ¼ 0:5 and

with k ¼ p at t ¼ 1:0, respectively. Figs. 7 and 8, respectively, depict the computational results for condition

(ii) and condition (iii) at t ¼ 1:0. These computations are performed with the Fromm scheme. From these

calculations, it is shown that the proposed scheme can provide numerical results in agreement with exact
solutions for the linear degenerate system.

6.3. Non-linear non-degenerate system

The equation type to be solved in this category is chosen as

ou
ot

þ u
ou
ox

� v
ov
ox

¼ 0; ð60aÞ
ov
ot

þ v
ou
ox

þ u
ov
ox

¼ 0: ð60bÞ

This is also a conservative non-linear system. If we introduce a complex variable



Fig. 6. Computational results for linear degenerate systemwith initial condition (i) by the Fromm scheme: (a) k ¼ 5p at t ¼ 0:5, (b) k ¼ p
at t ¼ 1:0.

Fig. 7. Computational results for linear degenerate system with initial condition (ii) at t ¼ 1:0 by the Fromm scheme.
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x ¼ uþ jv; ð61Þ

then the above equation system (60) can be rearranged as

ox
ot

þ x
ox
ox

¼ 0: ð62Þ

As compared with the Burgers� equation in real space, this equation system can be designated as the

complex Burgers� equation with eigenvaules

k1 ¼ uþ jv and k2 ¼ u� jv: ð63Þ

The exact solution for a general smooth initial condition (7c) at any particular location ðx; tÞ can be ob-

tained by the following relation:



Fig. 8. Computational results for linear degenerate system with initial condition (iii) at t ¼ 1:0 by the Fromm scheme.
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fu þ jfv ¼ uþ jv� u0ðx� ut � jvtÞ � jv0ðx� ut � jvtÞ ¼ 0: ð64Þ

Therefore, the exact solution can be found with a suitable iterative method. For the three types of initial

conditions given in Eq. (53a)–(53c), the corresponding exact solutions will satisfy the following relation:

ðiÞ fu ¼ uþ sinhðkvtÞ sin½kðx� utÞ� ¼ 0; fv ¼ v� coshðkvtÞ cos½kðx� utÞ� ¼ 0; ð65aÞ
ðiiÞ fu ¼ u� sinðkvtÞ sinh½kðx� utÞ� ¼ 0; fv ¼ v� cosðkvtÞ cosh½kðx� utÞ� ¼ 0; ð65bÞ
ðiiiÞ fu ¼ uþ sinðkvtÞ cosðkvtÞ
sinh2½kðx� utÞ� þ cos2ðkvtÞ

¼ 0; fv ¼ v� sinh½kðx� utÞ� cosh½kðx� utÞ�
sinh2½kðx� utÞ� þ cos2ðkvtÞ

¼ 0:

ð65cÞ

For comparison with numerical results, we adopted the Newton–Raphson method to iteratively find the
exact solution satisfying the following convergence criteria between two successive calculations:

maxðjDuj; jDvjÞ6 10�7 and maxðjfuj; jfvjÞ6 10�10: ð66Þ

Further reduction on the convergence criteria will not increase the solution accuracy significantly in the

present calculations. The coefficient matrix between the right and left states in our scheme (20) is chosen to
satisfy the general jump condition (20d)

�AAðUR;ULÞ ¼ A
UR þUL

2

� �
¼ 1

2

ðuR þ uLÞ �ðvR þ vLÞ
ðvR þ vLÞ ðuR þ uLÞ

� �
: ð67Þ

From the previous experience in calculating linear non-degenerate system, more severe numerical stability
problem due to the high frequency error can be expected in these simulations. Meanwhile, besides this high

frequency error in the computations, another numerical difficult may be encountered due to the oscillatory

solutions originating from the computational boundaries. These oscillatory solutions will grow indefinitely

such that the eigenvalues near the computational boundaries will approach infinity. Therefore, the chosen

time step to yield a stable solution in the interested domain will become too small to proceed to further

practical computations. Figs. 9(a) and (b) illustrate the computational results for the initial condition (i)

with k ¼ 5p at t ¼ 0:04 and with k ¼ p at t ¼ 0:08, respectively. Figs. 10 and 11, respectively, depict the

calculated results for the condition (ii) at t ¼ 0:03 and for the condition (iii) at t ¼ 0:2. These computational



Fig. 9. Computational results for non-linear nondegenerate system with initial condition (i) by the Fromm scheme: (a) k ¼ 5p at

t ¼ 0:04, (b) k ¼ p at t ¼ 0:08.

Fig. 10. Computational results for non-linear non-degenerate system with initial condition (ii) at t ¼ 0:03 by the first-order scheme.
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results are obtained by the Fromm scheme. At these limited available simulation time, the computational

results are in agreement with the exact solution.

6.4. Non-linear degenerate system

The equation type to be solved in this category is chosen as:

ouþ v
ouþ u

ov ¼ 0; ð68aÞ

ot ox ox
ov
ot

þ v
ov
ox

¼ 0; ð68bÞ



Fig. 11. Computational results for non-linear non-degenerate system with initial condition (iii) at t ¼ 0:2 by the first-order scheme.
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where the second equation is the conventional Burgers� equation. Eigenvalues for this conservative non-

linear system are

k1 ¼ k2 ¼ v: ð69Þ

The exact solution for the general initial condition (7c) can then be found from the following relations:

u ¼ u0ðx� vtÞ
1þ tv00ðx� vtÞ ; ð70aÞ
fv ¼ v� v0ðx� vtÞ ¼ 0: ð70bÞ

It needs a suitable iterative method to solve Eq. (70b) for v, which is then substituted into Eq. (70a) to

obtain the solution for u. For the initial condition given in Eq. (53), u0ðxÞ is modified to obtain a non-trivial

distribution of uðx; tÞ

u0ðxÞ ¼ 1:0: ð71Þ

The corresponding exact solutions will satisfy the following relations:

ðiÞ u ¼ 1

1� tk sin½kðx� vtÞ� ; fv ¼ v� cos½kðx� vtÞ� ¼ 0; ð72aÞ
ðiiÞ u ¼ 1

1þ tk sinh½kðx� vtÞ� ; fv ¼ v� cosh½kðx� vtÞ� ¼ 0; ð72bÞ
ðiiiÞ u ¼ 1

1þ tk sech2½kðx� vtÞ�
; fv ¼ v� tanh½kðx� vtÞ� ¼ 0: ð72cÞ

Newton–Raphson method is adopted to iteratively solve for the equation, fv ¼ 0, until the convergence

criteria between two successive calculations has been satisfied

jDvj6 10�7 and jfvj6 10�10: ð73Þ
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Figs. 12(a) and (b) illustrate the computational results for the initial condition (i) with k ¼ 5p at t ¼ 0:05
and with k ¼ p at t ¼ 0:3, respectively. Figs. 13 and 14(a), respectively, depict the calculated results for the

condition (ii) at t ¼ 0:04 and for the condition (iii) at t ¼ 1:0. These computational results are obtained by
the Fromm scheme. Quite satisfactory results are obtained as compared with the exact solutions. Fig. 14(b)

shows the computational result for the hyperbolic tangent initial condition (iii) with the first-order upwind

scheme. A phenomenon similar to the sonic-point deficiency in the calculation of hyperbolic system can be

observed near x ¼ 0 [19]. Meanwhile, the first-order upwind scheme provides more diffusive solution as

compared with the Fromm scheme.

6.5. Non-degenerate system with inter-drag and diffusion terms

As evident in the previous calculations, the pure non-hyperbolic system will yield an ill-posed problem.

Calculated solutions will be contaminated by the high frequency errors. However, such an ill-posed system
Fig. 12. Computational results for non-linear degenerate system with initial condition (i) by the Fromm scheme: (a) k ¼ 5p at t ¼ 0:05,

(b) k ¼ p at t ¼ 0:3.

Fig. 13. Computational results for non-linear degenerate system with initial condition (ii) at t ¼ 0:04 by the Fromm scheme.



Fig. 14. Computational results for non-linear degenerate system with initial condition (iii) with k ¼ 6p at t ¼ 1:0: (a) the Fromm

scheme, (b) the first-order scheme.
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can be stabilized by additional inter-drag and diffusion terms. In this section, we will perform numerical

evidence to show the usefulness of proposed scheme by solving both linear and non-linear problems. First,
a linear system is simulated and the calculated result will be compared with the available exact solution. In

this calculation, the adopted inter-drag and diffusion coefficients are set to be l ¼ 0:01 and fd ¼ k2I=2l,
respectively, to guarantee a stable solution (43b). The initial condition is assigned the sinusoidal distri-

bution as in Eq. (53a) and the corresponding exact solution will be

u ¼ 1

2
½expð�~kk2Þ � expð�~kk1Þ�

fd cos½kðx� kRtÞ� þ kkI sin½kðx� kRtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
d þ k2k2I

q ; ð74aÞ
v ¼ 1

2
½expð�~kk2Þ þ expð�~kk1Þ� cos½kðx� kRtÞ� ð74bÞ

with the eigenvalues, ~kk1 and ~kk2, given in (41a), (41b). The calculated results by the Fromm scheme for the

higher wave number with k ¼ 5p at t ¼ 0:5 and for the lower wave number with k ¼ p at t ¼ 1:0 are, re-

spectively, illustrated in Figs. 15(a) and (b). Effects of grid spacing on solution accuracy at t ¼ 1:0 for k ¼ p
and the evolution of solution accuracy with Dx ¼ 0:01 are shown in Figs. 16(a) and (b), respectively.

Definition of solution error measure (En) has been given in Eq. (55). In these figures, it is clearly shown that

the spurious artifact due to high frequency disturbance is eliminated and the proposed methodology with

Fromm scheme may provide second-order accurate numerical solution for the stable non-hyperbolic sys-

tem. Furthermore, we apply the proposed scheme to solve a non-linear system,

ou
ot

þ u
ou
ox

� v
ov
ox

þ CDju� vjðu� vÞ � l
o2u
ox2

¼ 0; ð75aÞ
ov
ot

þ v
ou
ox

þ u
ov
ox

þ CDju� vjðv� uÞ � l
o2v
ox2

¼ 0: ð75bÞ

This equation system can be regarded as a simplified two-phase model equation, where u and v are the

phasic velocities and CD the inter-phase drag coefficient. The eigenvalues for this system are k1 ¼ u� jv and



Fig. 15. Computational results for linear non-degenerate system with inter-drag and diffusion terms for initial condition (i) by the

Fromm scheme: (a) k ¼ 5p at t ¼ 0:5, (b) k ¼ p at t ¼ 1:0.

Fig. 16. Solution error for linear non-degenerate system with inter-drag and diffusion terms for initial condition (i) and k ¼ p: (a) effect
of grid spacing at t ¼ 1:0, (b) time evolution with Dx ¼ 0:01.
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k2 ¼ uþ jv. As the stability condition for linear system shown in Eq. (43b), the corresponding condition for

this model equation is

CDlju� vjP v2=2: ð76Þ

That is, for small phasic velocity difference (ju� vj), this is an unstable system and the phasic velocities will

grow; while for large phasic velocity difference, this system may be stabilized with the diffusion and inter-

drag terms. With a certain appropriate initial condition, one may expect to observe the magnitude of phasic

velocities grow in initial stage and diminish in a later stage. This equation system consists of many essential

ingredients to simulate the non-linear non-hyperbolic system of equations. In the present calculation, the

diffusion and drag coefficients are, respectively, assigned as l ¼ 0:05 and CD ¼ 0:5. Initial condition is set as

given in Eq. (53a) for a sinusoidal distribution with k ¼ p. Since it is impossible to obtain the exact solution
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for this problem, the computational results are shown to depict the interactions between phasic velocities

and effects of inter-drag and diffusion terms. The calculation is performed with the second-order Fromm

scheme.
For comparison, the initial distributions of solution vectors, u and v, are shown in Fig. 17(a). Since the

resulting solutions are periodic functions, the following discussions can be confined in the range of

�1 < x6 1 . At initial stage, effects of viscous term can be neglected as compared with the inter-convective

term, vðov=oxÞ in Eq. (75a) and inter-drag term. Therefore, as shown in Fig. 17(b) for t ¼ 0:25, the dis-

tributions of u and v can be, respectively, approximated by the following relations:

(i) for jxj6 0:5

u � �tk cosðkxÞ sinðkxÞ þ CDt cos2ðkxÞ;
Fig

the
v � cosðkxÞ � CD cos2ðkxÞ;
. 17. Computational results for non-linear non-degenerate system with inter-drag and diffusion terms for initial condition (i) and by

Fromm scheme: (a) t ¼ 0, (b) t ¼ 0:25, (c) t ¼ 0:5, (d) t ¼ 1:0, (e) t ¼ 1:5, (f) t ¼ 2:0, (g) t ¼ 3:0, (h) t ¼ 4:0.



Fig. 17. (continued)
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(ii) for jxj > 0:5

u � �tk cosðkxÞ sinðkxÞ � CDt cos2ðkxÞ;
v � cosðkxÞ þ CD cos2ðkxÞ

if the propagation terms, uðou=oxÞ in Eq. (75a) and uðov=oxÞ in Eq. (75b), are also neglected for small u. As

time evolves, effects of propagation terms will affect the solution vectors to form a N-wave type for u, which

forms steep gradients around at x ¼ 0 and x ¼ 1. Such steep gradients of u will further increase the mag-

nitude of v through the inter-convective term, vðou=oxÞ. Therefore, spikes of v occur around the steep

gradient of u. Such phenomena are clearly illustrated in Fig. 17(c) for t ¼ 0:5. Further interaction between

phasic velocities will further enforce the magnitudes of spikes in v and gradients in u. Meanwhile, the inter-

drag term will decrease the difference between phasic velocities (CD > 0). The magnitude of u near x ¼ 0 will

be subsequently increased and near x ¼ 1 decreased. With this effect, the steep gradient at x ¼ 0 will
propagate in the positive x-direction and that at x ¼ 1 in the negative direction. This is the scenario ob-

served in Fig. 17(d) for t ¼ 1:0. As time further increases, the effects of diffusion term will dominate the
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distributions of solution vectors near steep gradients and subsequently decrease the magnifying effects due

to inter-convective terms. This phenomenon can be observed in Fig. 17(e) for t ¼ 1:5. As can be seen in

Fig. 17(f) for t ¼ 2:0, the two steep gradients of u originated at x ¼ 0 and x ¼ 1 merge; whereas, the gradient
of u and magnitudes of v around these gradients decrease. Finally, all information will diminish due to the

inter-drag and diffusion effects as illustrated Fig. 17(g) for t ¼ 3:0 and Fig. 17(h) for t ¼ 4:0. From above

observations, it is evident that the computational results can be reasonably interpreted by the non-linear

interactions between solution vectors.
7. Conclusions

Although the characteristic form of a non-hyperbolic equation system will consist of complex quantities,

it can be transformed into an associated canonical form in real space. This procedure is detailed in the

present study by introducing an appropriate eigensystem transformation. Based on the canonical expres-

sion, a general second-order scheme can be constructed to simulate the equation system. This scheme is

coincident with the well-established upwind scheme if the equation system becomes hyperbolic. To justify

our proposition, numerical analyses are performed to show the deficiency of the segregated treatment for

coupled equations, which may consequently yield unstable solution for a simple linear hyperbolic system.

Meanwhile, normal-mode analysis is also employed to indicate the stability of the proposed scheme and the
associated time step constraint. The proposed scheme is also extended to solve degenerate equation systems.

Effects of inter-drag and diffusion terms to stabilize the non-hyperbolic system are also investigated. Several

representative model equations are solved to verify the feasibility of the present scheme. Pure non-

hyperbolic systems are solved and compared with the available exact solutions. Since these systems may form

ill-posed problems, the solutions will be eventually contaminated by the high frequency errors inherent in

the numerical calculations. However, accurate results can be obtained with the present method before the

high frequency errors dominate the solution information. For degenerate systems with real eigenvalues, the

computational results are in very agreement with the exact solutions since the high frequency error will not
pollute the useful information. Numerical results also show that additional inter-drag and diffusion terms

may stabilize the non-hyperbolic system. Accurate results are obtained for the model linear problem. As for

the non-linear case, a model two-phase equation system is simulated by the proposed scheme. All com-

putational results can be reasonably interpreted by the interactions between phasic velocities. Therefore,

based on the numerical analyses and computational experiments, one can conclude that the present scheme

may be a useful tool to solve the general system of equations without regard to their hyperbolcity.

Therefore, subsequent study will be conducted to incorporate the present method with the algebraic ei-

gensystem expressions for model two-fluid equations to provide an efficient and accurate simulation tool
for the two-phase flow problems.
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